Abstract

In this article we study various systems that represent the shallow water wave equation vxxt+αvvt−βvx∂x‐1(vt) −vt−vx = 0,where (∂x−1f)(x)=∫x∞f(y) dy, and α and β are arbitrary, nonzero, constants. The classical method of Lie, the nonclassical method of Bluman and Cole [J. Math. Mech. 18:1025 (1969)], and the direct method of Clarkson and Kruskal [J. Math. Phys. 30:2201 (1989)] are each applied to these systems to obtain their symmetry reductions. It is shown that for both the nonclassical and direct methods unusual phenomena can occur, which leads us to question the relationship between these methods for systems of equations. In particular an example is exhibited in which the direct method obtains a reduction that the nonclassical method does not.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.