Abstract
In this paper an adaptive algorithm for Smoothed Particle Hydrodynamics (SPH) for the Shallow Water Equations (SWEs) is presented. The area of a particle is inversely proportional to depth giving poor resolution in small depths without particle refinement. This is a particular limitation for flooding problems of interest here. Higher resolution is created by splitting the particles, while particle coalescing (or merging) improves efficiency by reducing the number of the particles when acceptable. The new particle coalescing procedure merges two particles together if their area becomes less than a predefined threshold value. Both particle splitting and coalescing procedures conserve mass and momentum and the smoothing length of new particles is calculated by minimizing the density error of the SPH summation. The new dynamic particle refinement procedure is assessed by testing the numerical scheme against analytical, experimental and benchmark test cases. The analytical cases show that with particle splitting and coalescing typical convergence rates remain faster than linear. For the practical test case, in comparison to using particle splitting alone, the particle coalescing procedure leads to a significant reduction of computational time, by a factor of 15. This makes the computational time of the same order as mesh-based methods with the advantage of not having to specify a mesh over a flood domain of unknown extent a priori.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.