Abstract

In the present work, a high aspect ratio process (HARP) using a new O3/TEOS based sub atmospheric chemical vapor deposition process was implemented as STI gapfill in sub-65-nm CMOS. Good gapfill performance up to aspect ratios greater than 10:1 was demonstrated. Since the HARP process does not attack the STI liner as compared to HDP, a variety of different STI liners can be implemented. By comparing HARP with HDP, the geometry dependence of nand p-FET performance due to STI stress is discussed

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.