Abstract

In a previous paper, we introduced a deep learning neural network that should be able to detect the existence of very shallow periodic planetary transits in the presence of red noise. The network in that feasibility study would not provide any further details about the detected transits. The current paper completes this missing part. We present a neural network that tags samples that were obtained during transits. This is essentially similar to the task of identifying the semantic context of each pixel in an image—an important task in computer vision, called “semantic segmentation,” which is often performed by deep neural networks. The neural network we present makes use of novel deep learning concepts such as U-Nets, Generative Adversarial Networks, and adversarial loss. The resulting segmentation should allow further studies of the light curves that are tagged as containing transits. This approach toward the detection and study of very shallow transits is bound to play a significant role in future space-based transit surveys such as PLATO, which are specifically aimed to detect those extremely difficult cases of long-period shallow transits. Our segmentation network also adds to the growing toolbox of deep learning approaches that are being increasingly used in the study of exoplanets; but, so far mainly for vetting transits, rather than their initial detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.