Abstract

AbstractThe material properties and distribution of faults above the seismogenic zone promote or inhibit earthquake rupture propagation. We document the depths and mechanics of fault slip along the seismically active Hurricane fault, UT, with scanning and transmission electron microscopy and hematite (U‐Th)/He thermochronometry. Hematite occurs as mm‐scale, striated patches on a >10 m2 thin, mirror‐like silica fault surface. Hematite textures include bulbous aggregates and cataclasite, overlain by crystalline Fe‐oxide nanorods and an amorphous silica layer at the slip interface. Textures reflect mechanical, fluid, and heat‐assisted amorphization of hematite and silica‐rich host rock that weaken the fault and promote rupture propagation. Hematite (U‐Th)/He dates document episodes of mineralization and fault slip between 0.65 and 0.36 Ma at ∼300 m depth. Data illustrate that some earthquake ruptures repeatedly propagate along localized slip surfaces in the shallow crust and provide structural and material property constraints for in models of fault slip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call