Abstract
Although landslides are frequent natural phenomena in mountainous regions, the lack of data in emerging countries is a significant issue in the assessment of shallow landslide susceptibility. A key factor in risk-mitigation strategies is the evaluation of deterministic physical models for hazard assessment in these data-poor regions. Given the lack of physical information, input parameters to these data-intensive deterministic models have to be estimated, which has a negative impact on the reliability of the assessment. To address this problem, we examined shallow landslide hazard in Comitancillo municipality, Guatemala. Shallow landslides are here defined as small (less than two or three metre-deep) rotational or translational slides or earth flows. We based our hazard simulation on the stability index mapping model. The model’s input parameters were estimated from a statistical analysis of factors affecting landslides in the municipality obtained from a geodatabase. The outputs from the model were analysed and compared to an inventory of small-scale landslides. The results of the comparison show the effectiveness of the method developed to estimate input parameters for a deterministic model, in regions where physical data related to the assessment of shallow landslide susceptibility is lacking.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.