Abstract

Many researchers have evaluated the influence of vegetation cover on slope stability. However, due to the extensive variety of site conditions and vegetation types, different studies have often provided inconsistent results, especially when evaluating in different regions. Therefore, additional studies need to be conducted to identify the positive impacts of vegetation cover for slope stabilization. This study used the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS) to predict the occurrence of landslides in a watershed in Jinbu-Myeon, Pyeongchang-gun, Korea. The influence of vegetation cover was assessed by spatially and temporally comparing the predicted landslides corresponding to multiple trials of cohesion values (which include the role of root cohesion) and real observed landslide scars to back-calculate the contribution of vegetation cover to slope stabilization. The lower bound of cohesion was defined based on the fact that there are no unstable cells in the raster stability map at initial conditions, and the modified success rate was used to evaluate the model performance. In the next step, the most reliable value representing the contribution of vegetation cover in the study area was applied for landslide assessment. The analyzed results showed that the role of vegetation cover could be replaced by increasing the soil cohesion by 3.8 kPa. Without considering the influence of vegetation cover, a large area of the studied watershed is unconditionally unstable in the initial condition. However, when tree root cohesion is taken into account, the model produces more realistic results with about 76.7% of observed unstable cells and 78.6% of observed stable cells being well predicted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.