Abstract

The aim of this study was the use of electrical resistivity imaging to investigate the geometry of the southwest portion of one of the most important geologic fault zones of the Panama Canal Watershed: the Limón fault. This fault is characterized by its juxtaposition of pre-Tertiary andesitic basalt (Playa Venado Formation) against late Oligocene Tertiary sediments (Caimito Formation). In this zone, four 2D electrical resistivity tomography profiles were conducted perpendicular to the fault trace: T-1, T-2, T-3 and T-4. The T-1, T-3, and T-4 profiles were long profiles (235m for the first two and 215m for the last one), with a goal of determining the depth of the geologic boundary between the sedimentary and andesitic deposits. The T-2 profile was a short profile (23.5m), with the objective of calibrating the results with data provided by the paleoseismic trenching previously developed in the area of interest. For these tests, two electrode arrays of types Wenner-Schlumberger and Dipole-Dipole, were used. For the inversion routine, two regularized least-squares methods were used: the smoothness-constrained method and robust inversion. The long electrical resistivity tomography profiles were able to identify a set of electrical anomalies associated with the andesitic basalt and the Tertiary sediments and with that, the contact geometry between these formations. In these profiles, fault angle measurements ranged from 60° to 80° with respect to the ground surface. In the T-2 profile, the electrical anomalies showed a good association with the results of the paleoseismic study. This allowed identification of the colluvium and alluvium covering the gravel and sand debris that mark the gradual transition to the soils of the Caimito Formation. Finally, a set of 2D synthetic models was developed for each of the T-1, T-3, and T-4 profiles with the objective of optimizing interpretation of the field results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.