Abstract
Pan-sharpening is a significant task in remote sensing image processing, which merges a high-resolution panchromatic (PAN) image and a low-resolution multispectral (MS) image to create a high-resolution MS image. In this article, we propose a novel deep-learning-based MS image pan-sharpening method that combines a shallow–deep convolutional network (SDCN) and a spectral discrimination-based detail injection (SDDI) model. SDCN consists of a shallow network and a deep network, which can capture mid-level and high-level spatial features from PAN images. SDDI, inspired by the “Amelioration de la Resolution Spatial par Injection de Structures” concept, is developed to merge the spatial details extracted by SDCN into MS images with minimal spectral distortion. SDCN and SDDI are collaboratively learned for achieving high-spatial-resolution MS image and preserving more spectral information. Both the visual assessment and the quantitative assessment results on IKONOS and QuickBird datasets confirmed that the proposed method outperforms several state-of-the-art pan-sharpening methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.