Abstract
Paper describes an investigation of possible usage of shallow (limited by few layers only) convolutional neural networks to solve famous pattern classification problems. Brazilian coffee scenes, SAT-4/SAT-6, MNIST, UC Merced Land Use and CIFAR datasets were tested. It is shown that shallow convolution neural networks with partial training may be effective enough to produce the result close to state-of-the-art deep networks but also limitations are found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.