Abstract

The energies of localized acceptor states in quantum wells (strained Ge layers in Ge/Ge1−xSix heterostructures) were analyzed theoretically in relation to the quantum well width and the impurity position in the well. The impurity absorption spectrum in the far IR range is calculated. Comparison of the results of the calculation with experimental photoconductivity spectra allows an estimation of the acceptor distribution in the quantum well to be made. In particular, it was concluded that acceptors may largely concentrate near the heterointerfaces. The absorption spectrum is calculated taking into account the resonance impurity states. This allows the features observed in the short-wavelength region of the spectrum to be interpreted as being due to transitions into the resonance energy levels “linked” to the upper size-quantization subbands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call