Abstract
Security is not only a matter of cryptographic algorithms robustness but becomes also a question of securing their implementation. P. Kocher’s differential power analysis (DPA) is one of the many side-channel attacks that are more and more studied by the security community. Indeed, side-channel attacks (SCA) have proved to be very powerful on cryptographic algorithms such as DES and AES, customarily implemented in a wide variety of devices, ranging from smart-cards or ASICs to FPGAs. Among the proposed countermeasures, the “dual-rail with precharge logic” (DPL) aims at hiding information leaked by the circuit by making the power consumption independent of the calculation. However DPL logic could be subject to second order attacks exploiting timing difference between dual nets. In this article, we characterize by simulation, the vulnerability due to timing unbalance in the eight DES substitution boxes implemented in DPL WDDL style. The characterization results in a classification of the nodes according to their timing unbalance. Our results show that the timing unbalance is a major weakness of the WDDL logic, and that it could be used to retrieve the key using a DPA attack. This vulnerability has been experimentally observed on a full DES implementation using WDDL style for Altera Stratix EP1S25 FPGA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.