Abstract

We study the optimal liquidation problem in a market model where the bid price follows a geometric pure jump process whose local characteristics are driven by an unobservable finite-state Markov chain and by the liquidation rate. This model is consistent with stylized facts of high frequency data such as the discrete nature of tick data and the clustering in the order flow. We include both temporary and permanent effects into our analysis. We use stochastic filtering to reduce the optimal liquidation problem to an equivalent optimization problem under complete information. This leads to a stochastic control problem for piecewise deterministic Markov processes (PDMPs). We carry out a detailed mathematical analysis of this problem. In particular, we derive the optimality equation for the value function, we characterize the value function as continuous viscosity solution of the associated dynamic programming equation, and we prove a novel comparison result. The paper concludes with numerical results illustrating the impact of partial information and price impact on the value function and on the optimal liquidation rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.