Abstract
Shale resource systems have had a dramatic impact on the supply of oil and especially gas in North America, in fact, making the United States energy independent in natural gas reserves. These shale resource systems are typically organic-rich mudstones that serve as both source and reservoir rock or source petroleum found in juxtaposed organic-lean facies. Success in producing gas and oil from these typically ultra-low-permeability (nanodarcys) and low-porosity (15%) reservoirs has resulted in a worldwide exploration effort to locate and produce these resource systems. Successful development of shale-gas resource systems can potentially provide a long-term energy supply in the United States with the cleanest and lowest carbon dioxide-emitting carbon-based energy source.Shale-gas resource systems vary considerably system to system, yet do share some commonalities with the best systems, which are, to date, marine shales with good to excellent total organic carbon (TOC) values, gas window thermal maturity, mixed organic-rich and organic-lean lithofacies, and brittle rock fabric. A general classification scheme for these systems includes gas type, organic richness, thermal maturity, and juxtaposition of organic-lean, nonclay lithofacies. Such a classification scheme is very basic, having four continuous shale-gas resource types: (1) biogenic systems, (2) organic-rich mudstone systems at low thermal maturity, (3) organic-rich mudstone systems at a high thermal maturity, and (4) hybrid systems that contain juxtaposed source and nonsource intervals.Three types of porosity generally exist in these systems: matrix porosity, organic porosity derived from decomposition of organic matter, and fracture porosity. However, fracture porosity has not proven to be an important storage mechanism in thermogenic shale-gas resource systems.To predict accurately the actual resource potential, the determination of original hydrogen and organic carbon contents is necessary. This has been a cumbersome task that is simplified by the use of a graphic routine and frequency distribution (P50) hydrogen index in the absence of immature source rocks or data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.