Abstract

Abstract Both the characteristics of lithofacies and tectonic movements are important factors in controlling the development, destruction, and preservation of pores in shale reservoirs. However, the main factors that control the structure of shale pores are complex and highly disputed, restricting the understanding of the mechanisms that lead to the accumulation of shale gas. In this study, mineral composition and geochemical analyses, high resolution field emission scanning electron microscopy (FE-SEM), and low-pressure gas adsorption (N2 and CO2) were conducted to evaluate the pore systems of different types shale in the Jiaoshiba area, Sichuan Basin. A total of three shale groups, including silica-rich high production shales, clay-rich low production shales, and silica-rich low production shales were identified on the basis of lithofacies and gas-bearing characteristics. The highest values of TOC, pore volume, and specific surface area are found in the silica-rich high production shales, with an average of 4.182%, 33.04 × 10−3 cm3/g, and 38.71 m2/g, respectively. The total pore volume and specific surface area in the clay-rich low production shales are 19.85% and 28.62% lower than that of silica-rich high production shales. This suggests that the types of lithofacies have a more prominent influence on the specific surface area of the shales, while the pore volume plays a smaller role. However, the pressure in silica-rich low production shales is often released due to strong tectonic deformation. The OM pores in the silica-rich low production shales therefore tend to be both compressed and closed, with low surface porosity and of round shape. The total pore volume and specific surface area of silica-rich low production shales are 34.63% and 22.0% lower than that of the silica-rich high production shales. This indicates that tectonic movement has a significant influence on the shale pore volume, while specific surface area has a smaller influence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call