Abstract

Permeability is one of the most fundamental reservoir rock properties required for modeling hydrocarbon production. However, shale permeability is not yet fully understood because of the high temperature of shale reservoirs. The third thermal stress that is caused by temperature change will decrease the permeability of shale. In this work, a theoretical model has been derived to describe the permeability of shale considering the third thermal stress; the principles of thermodynamics and the mechanics of elasticity have been employed to develop this model. The elastic modulus parameters of the shale were measured, along with Poisson’s ratio, as required. Lastly, the permeability of shale was tested by transient pulse-decay. Isothermal flow experiments were carried out at 303, 313, 323, and 333 K to assess the effects of shale expansion and deformation on shale permeability caused by the third thermal stress. The permeability of shale samples, as predicted by the model, was found to agree well with experimental observations. The model may provide useful descriptions of the gas flow in shale. The correction accuracy of the permeability was found to increase at lower permeability. However, the development of completely predictive models for shale permeability will require additional experimental data and further testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.