Abstract

The traveling wave effect and soil–structure interaction have significant influence on the seismic response of large-span bridges with complex site conditions. In this paper, a 1/10 scaled-down large-span rigid-framed bridge model was designed and fabricated, and a shaking tables test considering the traveling wave effect and soil–structure interaction was carried out on a large-scale continuous rigid bridge model by a real-time substructure hybrid test technique. Influences of the traveling wave effect and soil–structure interaction on the seismic responses of the rigid-framed bridge specimen were systematically analyzed with experimental data. The test results showed that when the apparent wave speed was small, the traveling wave effect increased the seismic responses of the rigid-framed bridge. With the increase in apparent wave speed, the structural response under traveling wave excitation and uniform excitation was basically the same. The SSI effect lead to a great change in the seismic input peaks and spectral characters at the bottom of the pier, and increased the seismic responses of the rigid-framed bridge. When both traveling wave and the SSI effect were considered, there was a phase difference in the seismic excitation. The dynamic responses of a continuous rigid-framed bridge could not be simply obtained by superposition of the separate traveling wave effect or SSI effect. Meanwhile, the real-time substructure test method in this paper solved the problems that the traditional soil box experiment cannot be applied to the test of a large-scale model, the soil and bridge structure find it difficult to meet the unified similarity ratio, and the boundary conditions are difficult to simulate accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.