Abstract

SummaryThis paper presents the results of an experimental work in order to evaluate the performance of a novel proposed retrofitting technique on a typical dome‐roof adobe building by shaking table tests. For this purpose, two specimens, scaled 2:3, were subjected to a total of nine shaking table tests. The unretrofitted specimen, constructed by common practice, is designed to evaluate seismic performance and vulnerability of dome‐roof adobe houses. The retrofitted specimen, exactly duplicating the first specimen, is retrofitted based on the results obtained from unretrofitted specimen tests, and the improvement in seismic behavior of the structure is investigated. Zarand earthquake (2005) Chatrood Station is selected as the input ground motion that was applied consecutively at 25, 100, 125, 150 and 175% of the design‐level excitation. At 125% excitation level, the roof of the unretofitted specimen collapsed due to the walls' out‐of‐plane action and imbalanced forces. The retrofitting elements consist of eight horizontal steel rods drilled into the walls, passed through the specimen and bolted on the opposite wall surfaces. To improve walls in‐plane seismic performance, welded steel mesh without using mortar, covered less than half area of walls on the external face of the walls, is used. In addition to strain gauges for recording steel rod responses, several instrumentations including acceleration and displacement transducers are implemented to capture response time histories of different parts of the specimens. The corresponding full‐scaled retrofitted prototype tolerated peak acceleration of 0.62 g almost without any serious damage. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.