Abstract

ABSTRACTThis article presents the identification of dynamic properties of a stone masonry building, followed by numerical simulation of its dynamic response accounting for soil-foundation-structure interaction. The first part regards numerical simulations of the earthquake response of a two-story building prototype with timber floors, made of three-leaf stone masonry without laces. This 1:2 scale prototype was tested on a shaking table in its as-built state and after strengthening, at the National Technical University of Athens. Afterward, the building prototype was modeled with flat shell elements and equivalent frames (common frames and macro-elements), for an investigation of its linear and nonlinear seismic response, assuming base fixity. Numerical results were compared to the experimental ones, which yielded conclusions on the considerations of each employed modeling strategy, as well as its efficiency and applicability. The second part considers the effect of soil-structure interaction using appropriately modified foundation stiffness values to account for the foundation soil flexibility. Comparison of the numerical results with and without SSI effects showed how the flexibility of the soil-foundation system and the soil-structure interaction modified the system’s modal characteristics and response within the elastic range, in terms of both seismic loads and deformations, and produced conclusions about its consequences on the overall structural stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call