Abstract

The base isolation, a kind of passive control technology, has been proved as a very efficient way to ensure the safety of a structure during severe earthquakes both from theoretical study and experimental effort. In general, the base isolation can be classified into two groups, which are sliding type and elastomeric type isolator. In this study, a new base isolator called as Multiple Friction Pendulum System (MFPS) has been proposed. The lubricant material, articulated slider and doubled concave sliding interfaces of MFPS are quite different from that proposed by V. Zayas in 1987. In this study, the MFPS isolator has been equipped beneath each column of a three-story structure at the National Center for Research on Earthquake Engineering to demonstrate its seismic resistance capability. The experimental results from shaking table tests of the 1940 El Centro, 1995 Kobe and 1999 Chi-Chi earthquake show that the proposed isolator can reduce the undesirable seismic response of the structure by lengthening the fundamental period of the structure during earthquakes. The experimental results indicate that the acceleration response of each floor can be lessened significantly as compared with those of the bare structure, and that the stress responses of structural components are limited in the certain range during severe earthquakes. Furthermore, the residual displacements of base isolators are negligible. Therefore, it is shown evidently that the proposed isolator can always bring the base-isolated structure to its initial position after an earthquake. Based on the previous observations, the proposed isolator can be adopted as an effective tool for upgrading the seismic resistibility of a structure. A finite element formulation for the MFPS is also proposed to simulate its mechanical behavior during earthquakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.