Abstract

The seismic performance of an innovative lightweight bridge with CFST composite truss girder and lattice pier was studied in this paper. Took Ganhaizi Bridge as prototype, a 1:8 scale specimen with two spans and three lattice high piers was designed for multi-shaking tables test. Adopted design seismic wave of prototype, dynamic characteristics, seismic performance and failure characteristics were analyzed. Results indicate that the frequency ratio and the displacement ratio between specimen and prototype are corresponding to similitude relationship. Under transverse or longitudinal excitation, acceleration in lattice zones significantly amplifies, and decreases the acceleration of the deck. It is unnecessary to consider the influence of bi-directional excitations. Displacement on the top of pier is less than the value limitation under design ground motions. The corresponding finite element simulations, using OpenSees, were carried out and the accuracy was verified. The finite element analysis results agree with experimental data. In addition, the plastic hinges were predicted under transverse and longitudinal excitation respectively, revealed that lightweight bridge with CFST composite truss girder and lattice pier has a favorable seismic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.