Abstract

SummaryThe replaceable coupling beam (RCB) is an innovative structural component developed to increase the seismic resilience of reinforced concrete (RC) shear wall structures. In this study, two 1/5‐scale 5‐story 3‐dimensional RC shear wall structures—one with conventional RC coupling beams and the other with RCBs—were designed, constructed, and tested on a shaking table. The failure pattern, dynamic properties, and structural responses, including the acceleration, displacement, story force, and strain responses, of the 2 structures are compared under earthquake excitations. The test results demonstrate that the seismic performance of the structure with RCBs was improved when RCBs were working compared with the structure with conventional RC coupling beams. In addition, the replaceable devices suffering the severe damage during an earthquake can be conveniently replaced after the earthquake. However, after the sudden failure of RCBs during the severe earthquakes, the inter‐story drift and floor acceleration of the structure with RCBs became larger. The design and manufacture quality of RCBs should be improved to avoid the sudden failure. Then, numerical models for the test structures were established using the commercial software PERFORM‐3D. Numerical simulations of the tests were conducted. The simulation results correspond well with the experimental results, thus verifying the accuracy of the numerical models. The RC shear wall structure installed with RCBs can be applied as a new type of earthquake‐resilient structure in engineering practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.