Abstract

Central columns have long been demonstrated to play a vital role in withstanding not only static gravity loads but also seismic loads like earthquakes. A series of modeling tests are implemented on shaking table instrument to reflect the mechanism of soil — structure interaction and examine the validity of method of uplifting underground structural seismic resistance through strengthening central columns. An innovative method of enhancing central columns by adhering carbon fiber cloth onto column’s peripheral surface is introduced into a series of shaking table modeling tests, in which two two-layer underground model structures are constructed for comparison, one without any column remedy acts as a benchmark for reference and the other is amended with carbon fiber cloth adhered on column surface. Test results show that soft round model box adopted in tests serves well in simulating earthquake actions with negligible boundary effects on wave transfer; soil dynamic characteristics and the relative stiffness of structure to surrounding soil will interactively limit mutual motion and deformation. Racking deformation assumption may be not applicable for overall two-layer underground structure deformation analysis, but may be suitable for inter-layer displacement calculation for single layer in multi-layer rectangular underground structures. The adopted column enhancement measure could not only greatly increase the stiffness ratio of model structure to soil, reducing structure deformation, but also improve the integrity of underground structure by narrowing down the deformation difference between two structural layers, certifying that such a measure could be validly used in improving the seismic resistance capacity for already built underground structures without enough aseismic consideration when designed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call