Abstract

PurposePrefabricated pier technology has the advantages of quick construction time, relatively little traffic interference and relatively small environmental impact. However, its applicability under earthquake conditions is not yet fully understood. The seismic performance and influence parameters of a prefabricated concrete pier connected by embedded grouting sleeve (GS) in a pile cap are investigated in this study.Design/methodology/approachTwo prefabricated pier scale model specimens with different reinforcement anchorage lengths and two comparative cast-in-place (CIP) pier model specimens are designed and manufactured for a seismic simulation shaking table. With the continuous increase of input ground motion strength, the changes in basic dynamic characteristics, damage development, acceleration and displacement variation laws, and pier bottom strain responses are compared among the specimen. The finite element software ABAQUS is used to simulate the test pier.FindingsThe crack location of the two prefabricated pier specimens is almost the same as that of the CIP pier specimens; CIP pier specimens show more penetrated cracks than prefabricated pier specimens, as well as an earlier crack penetration time. The acceleration, displacement and strain response of the CIP pier specimens are more affected by earthquake activity than those of the prefabricated pier specimens. The acceleration, displacement and strain responses of the two prefabricated piers are nearly identical. The finite element results are in close agreement with the acceleration and displacement response data collected from the test, which verifies the feasibility of the finite element model established in ABAQUS.Originality/valueA GS connection method is adopted for the prefabricated pier, and on the premise of meeting the minimum reinforcement anchorage length required by the code, this study explores the influences of different reinforcement anchorage lengths on the seismic performance of prefabricated piers in high-intensity areas. A shaking table loading test is used to simulate the real changes of the structure under the earthquake. This work may provide a valuable reference for the design and seismic performance analysis of prefabricated pier, particularly in terms of seismic stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call