Abstract

Split-foundation (SF) building structures, as a kind of hill-side buildings, are widely used in mountainous regions due to the scarcity of plain areas. In order to experimentally investigate the seismic responses of the SF structure, shaking table test was carried out on two 1/8-scale models: a split-foundation RC frame structure supported by foundations at two different levels and a conventional RC frame structure supported by foundations at one single level. The failure patterns, dynamic characteristics, acceleration responses, displacement responses, and torsion responses of the two models were assessed and compared under seismic ground motions. The test results indicate that the two models were severely damaged after the last intensity level excitation and showed an intermediate failure mechanism. The damage to the SF model was uneven and special with relatively severe damage of the upper grounded columns. The difference in natural frequencies between the two models resulted from the effect of the lower story on lateral stiffness, and the effect was relatively dramatic in the transverse direction. The difference in structural stiffness led to larger acceleration amplification factors of the SF model and smaller acceleration amplification factors in the longitudinal direction. Although the restriction at upper ground level created a certain effect on displacement responses of the SF model especially in the first story, the curve shapes of displacement responses of the two models were similar from the first floor to fourth floor. In addition, the torsion responses of the SF model, especially in the first story (upper ground story), were obviously much larger than those of the conventional model. The torsional effect cannot be ignored in the SF structure which is a torsionally sensitive structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call