Abstract
For studying the vibration characteristics of a laminar composite rotating blade, the spin softening effect calculated by the finite element method (FEM) was incorporated with the prestress effect to analyze shaking, swing, torsion, and coupled vibrations. The mathematical formula was derived. The study shows that the centrifugal force exerts influence on the difference in vibration frequencies. The laminar composite can reduce an influence of the spin softening on the first swing vibration frequency because of its structure and smaller density. With the variation of rotating velocity, the blade spin softening can lead to the coupled first shaking and first swing vibrations. In the coupled vibrations, swing is contained in the shaking mode and shaking is also contained in the swing one, which is the reason of major blade damages. The results confirm the complexity of the dynamic characteristics of the laminar composite rotating blade. This method is also well applicable to the dynamic design of such blades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.