Abstract

UHF RFID technology becomes increasingly popular in RFID-enabled stores (e.g., UNIQLO), since UHF RFID readers can quickly read a large number of RFID tags from afar. The deployed RFID infrastructure, however, does not directly benefit smartphone users in the stores, mainly because smartphones cannot read UHF RFID tags or fetch relevant information (e.g., updated price, real-time promotion). This paper aims to bridge the gap and allow users to ‘read’ UHF RFID tags using their smartphones, without any hardware modification to either deployed RFID systems or smartphone hardware. To ‘read’ an interested tag, a user makes a pre-defined smartphone gesture in front of an interested tag. The smartphone gesture causes changes in 1) RFID measurement data (e.g., phase) captured by RFID infrastructure, and 2) motion sensor data (e.g., accelerometer) captured by the user’s smartphone. By matching the two data, our system (named ShakeReader) can pair the interested tag with the corresponding smartphone, thereby enabling the smartphone to indirectly ‘read’ the interested UHF tag. We build a novel reflector polarization model to analyze the impact of smartphone gesture to RFID backscattered signals. Experimental results show that ShakeReader can accurately pair interested tags with their corresponding smartphones with an accuracy of >94.6%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.