Abstract

We simulate ground motion in southern California from an ensemble of 7 spontaneous rupture models of large (Mw7.8) northwest‐propagating earthquakes on the southern San Andreas fault (ShakeOut‐D). Compared to long‐period spectral accelerations from the Next Generation Attenuation (NGA) empirical relations, ShakeOut‐D predicts similar average rock‐site values (i.e., within roughly their epistemic uncertainty), but significantly larger values in Los Angeles and Ventura basins due to wave‐guide focusing effects. The ShakeOut‐D ground motion predictions differ from those of a kinematically parameterized, geometrically similar, scenario rupture: (1) the kinematic rock‐site predictions depart significantly from the common distance‐attenuation trend of the NGA and ShakeOut‐D results and (2) ShakeOut‐D predictions of long‐period spectral acceleration within the basins of the greater Los Angeles area are lower by factors of 2–3 than the corresponding kinematic predictions. We attribute these differences to a less coherent wavefield excited by the complex rupture paths of the ShakeOut‐D sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.