Abstract

In this paper, the shakedown behaviour of a cracked body is studied. The main idea is to consider the crack as a notch. Then no singular stresses appear at crack tip. Due to the local character of the problem, Melan's shakedown theorem is used. By solving shakedown as an optimization problem, the limited stress intensity factor (SIF) for shakedown K sh is obtained. It is found that the shakedown limit SIF of a cracked body is proportional to the initial yield stress σ y of the material times the square root of the effective crack tip radius π, i.e. K sh ∝ σ y√ ϱ. Comparison of shakedown limit SIFs with fatigue thresholds for certain materials, so far as can be found in literature, shows that these two quantities agree well with each other. This agreement indicates that shakedown of the cracked body is one of the reasons for arrest of the crack under cyclic loads. Shakedown investigation is then a new method for predicting the fatigue threshold of a cracked body. Thus, a transition from shakedown to cyclic fracture mechanics has been achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.