Abstract
This research paper is concerned with the mechanical behavior of the cylindrical vessels with hillside nozzles when subjected to both pressure and nozzle bending loads in cyclic forms. The influence of hillside angle on shakedown (SD) limits of the connection under cyclic pressure and combined steady pressure with cyclic nozzle bending is investigated. A shell finite element analysis model is built for the assembly using five different hillside angles ranging from 0 deg to 40 deg. Shakedown limits are determined by a direct technique known as the nonlinear superposition method (NSM). Bree diagrams for cyclic out of plane opening (OPO)/in plane (IP) nozzle moments combined with steady internal pressure are determined. The results show an increase in both OPO and IP shakedown moments as the hillside angle is increased. In addition, the OPO shakedown limit moments for all hillside angles were found to be insensitive to the level of internal pressure; this differs from the IP shakedown moment which starts to decrease with pressure for the high pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.