Abstract

This paper presents elastic, shakedown and plastic limit loads for 90° elbows under constant internal pressure and cyclic in-plane bending, via finite element (FE) analysis. Effects of the elbow geometry (the bend radius to mean radius ratio and the mean radius-to-thickness ratio) and of the large geometry change are systematically investigated. By normalizing the in-plane bending moment by the plastic limit load solution of Calladine, the shakedown diagram is found to be close to unity up to a certain value of normalized pressure (normalized with respect to the limit pressure) and then to decrease almost linearly with increasing normalized pressure. The value up to which shakedown limit loads remain constant depends on the elbow geometry and the large geometry change effect. Effects of the elbow geometry and the large geometry change on shakedown diagrams are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.