Abstract

In the current research, the elastic shakedown limit loads for a cylindrical vessel–nozzle intersection is determined via a direct noncyclic simplified technique. The cylindrical vessel–nozzle intersection is subjected to a spectrum of steady internal pressure magnitudes and cyclic in-plane bending moments on the nozzle end. The determined elastic shakedown limit loads are utilized to generate the elastic shakedown boundary (Bree diagram) of the cylindrical vessel–nozzle structure. Additionally, the maximum moment carrying capacity (limit moments) and the elastic limit loads are determined and imposed on the Bree diagram of the structure. The simplified technique outcomes showed excellent correlation with the results of full cyclic loading elastic–plastic finite element simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.