Abstract

Using the method of reduction of dimensionality, we calculate the microslip motion of a tangentially loaded frictional contact between an elastic sphere and a rigid base. An oscillating rotation of the sphere with a small amplitude leads to a creep motion of the rigid base. Depending on the amplitude and the tangential force, two possible scenarios may occur. For oscillation amplitudes smaller than a critical value, the rigid body shakes down in the sense that the frictional slip ceases after a limited number of rotation cycles. Otherwise, the rigid base starts to slip with a constant mean velocity, which depends on the static displacement and the rotational amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.