Abstract

AbstractThis research study was performed to examine the shakedown behavior of geogrid-reinforced unbound granular materials and evaluate the factors that affect the shakedown stress limits. To achieve this objective, the study was performed through conducting repeated load triaxial (RLT) tests on both unreinforced and geogrid-reinforced unbound granular specimens. A multistage RLT test, in which only one sample is needed to determine the shakedown stress limits, was selected in preference to a single-stage RLT test, in which several tests on multiple samples are required. Five geogrids of different tensile modulus and different aperture geometries (three rectangular or biaxial and two triangular or triaxial) were used. The test results clearly demonstrated the potential benefits of placing the geogrid within the unbound granular base specimen in terms of permanent deformation reduction. The benefits of the geogrid are more prevalent at higher stress levels and for higher tensile modulus geogrids. The inc...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call