Abstract
Shakedown analysis is an attractive method for determining the capacity of geostructures to sustain repeated loads involving a large number of cycles, e.g. rolling and sliding train wheel loads. Its main advantage is that it comes at a significantly reduced computational cost, compared to standard time-domain analyses. An essential component of shakedown analysis is the derivation of closed-form solutions to compute stresses due to the external repeated loads, a task that is not always feasible for complex problems as the ballasted rail track discussed herein. To tackle this, we present in this paper the use of finite element tools to obtain a quasi-lower-bound shakedown load numerically. The proposed method is based on the computation of the three-dimensional elastic stress field numerically, and the estimation of the shakedown load iteratively via an optimisation subroutine implemented in ABAQUS. Following a short presentation of this concept, we compare the elastic stress fields from models featuring varying degree of complexity, with the aim of identifying an optimal discretisation of the problem. This approach can be used for optimising the design of ballasted track structure, and this concept is briefly presented via a parametric study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.