Abstract

Under some heavy-duty conditions, the shakedown state may occur on gears such as those used in a megawatt wind turbine gearbox. The plastic deformation and the residual stress formed within the shakedown process further influence the contact behavior and the service life of the gear. The initial residual stress caused by the heat treatment of the case-hardening gear, together with the strain-hardening constitutive behavior of the material, have a combined effect on the shakedown state. A two-dimensional elastic-plastic contact numerical model was developed for a case-hardened wind turbine gear to study effects of the initial residual stress and the strain-hardening properties. Plastic strain and residual stress are calculated at each loading cycle without the consideration of the tooth friction. The initial yield limit and the hardening modulus of the material were obtained through a tension test on a universal tensile test machine. The initial residual stress distribution was measured with the X ray diffraction method and then embedded in the finite element model. The results show that strain-hardening behavior can significantly improve the shakedown performance, and the larger the hardening modulus is, the less the maximum plastic strain is at the final shakedown state. Initial residual compressive stress is helpful to improve the shakedown performance, while initial residual tensile stress has negative influence on the shakedown performance. As the normal load increases, the influence of the initial residual stress on the shakedown state becomes weakened.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call