Abstract

Bounding techniques for calculating shakedown loads are of great importance as design criteria since these eliminate the need for performing full cyclic loading programs either numerically or experimentally. The classical Melan theorem provides a way to recognize whether or not elastic shakedown occurs under a specified loading. Polizzotto extended Melan's theorem to the case where a combination of steady and cyclic loads are acting on the structure. The purpose of this paper is to present a finite element method, based on Polizzotto's theorem, to estimate elastic shakedown for a structure subjected to loads resulting from a combination of steady and cyclic mechanical loads. This method, called non-linear superposition, is then applied to investigate the shakedown behaviour of a biaxially loaded square plate with a central hole. Results obtained for the plate with a hole problem are compared with those available in the literature and are verified by means of cyclic elastoplastic finite element analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.