Abstract

ABSTRACT Shake table tests were conducted on a three-story steel braced frame with pretensioned basalt fiber reinforced polymer (BFRP) under the mainshock and aftershock sequences. The BFRPs were firstly tested to evaluate their dynamic behaviors. Then the self-centering braced frame was excited to a series of scaled earthquakes whose PGAs range from 0.2 g to 1.2 g. Through the pinned connections in the tested frame, the self-centering braces (SCBs) with pretensioned BFRPs were the standalone components to dissipate the seismic energy. The results revealed that the BFRPs with slight performance degradation were suitable to provide the restoring force for SCBs even under the strongest earthquake intensity. SCBs with pretensioned BFRPs were efficient in preventing damage and reducing the residual drift ratios. Although the aftershock slightly amplified the accelerations of the tested frame, the self-centering braced frame with pretensioned BFRPs presented similar drift ratios under the aftershock and separate mainshock with the same PGA. Therefore, the self-centering steel braced frame with pretensioned BFRPs has favorable resilient seismic behaviors and could quickly restore its functions after a strong mainshock-aftershock sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.