Abstract
AbstractThis paper presents the results of a series of shake table tests of two 460-mm-diameter columns supported on 1.5-meter-square shallow rocking foundations. The tests were conducted using the Large Outdoor High-Performance Shake Table of the Network for Earthquake Engineering Simulation at the University of California at San Diego. The first specimen was aligned with the uniaxial direction of shaking, and the second was positioned in a skew configuration. The specimens were placed inside a soil-confining box 10.1 m long and 4.6 m wide with a 3.4-m height of clean sand compacted at 90% relative density. Three series of tests were performed; each had different groundwater and backfill conditions. The test protocols included up to six historical ground motions and resulted in peak drift ratios up to 13.8%. For peak drift ratios up to 6.9%, the rocking foundations performed very well, with residual drift ratios between 0.5 and 0.9% depending on the backfill conditions and with minimal settlements and no...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Geotechnical and Geoenvironmental Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.