Abstract

To investigate the effectiveness of viscous damper on seismic control of single-tower cable-stayed bridges subjected to near-field ground motions, a 1/20-scale full cable-stayed bridge model was designed, constructed and tested on shake tables. A typical far-field ground motion and a near-field one were used to excite the bridge model from low to high intensity. The seismic responses of the bridge model with and without viscous dampers were analyzed and compared. Both numerical and test results revealed that viscous dampers are quite effective in controlling deck displacement of cable-stayed bridges subjected to near-field ground motions. However, due to near-field effects, viscous damper dissipated most energy through one large hysteresis loop, extensively increasing the deformation and damping force demand of the damper. Further study based on numerical analysis reveals that to optimize deck displacement of cable-stayed bridges during an earthquake, a viscous damper with relatively larger damping coefficient should be introduced under near-field ground motions than far-field ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.