Abstract

We show that several theorems about Polish spaces, which depend on the axiom of choice (\(\mathcal {AC}\)), have interesting corollaries that are theorems of the theory \(\mathcal {ZF} + \mathcal {DC}\), where \(\mathcal {DC}\) is the axiom of dependent choices. Surprisingly it is natural to use the full \(\mathcal {AC}\) to prove the existence of these proofs; in fact we do not even know the proofs in \(\mathcal {ZF} + \mathcal {DC}\). Let \(\mathcal {AD}\) denote the axiom of determinacy. We show also, in the theory \(\mathcal {ZF} + \mathcal {AD} + V = L(\mathbb {R})\), a theorem which strenghtens and generalizes the theorem of Drinfeld (Funct Anal Appl 18:245–246, 1985) and Margulis (Monatshefte Math 90:233–235, 1980) about the unicity of Lebesgue’s measure. This generalization is false in \(\mathcal {ZFC}\), but assuming the existence of large enough cardinals it is true in the model \(\langle L(\mathbb {R}),\in \rangle \).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.