Abstract

We creatively employ the shadow radius to study the thermodynamics of a charged AdS black hole with a nonlinear electrodynamics (NLED) term. First, the connection between the shadow radius and event horizon is constructed with the aid of the geodesic analysis. It turns out that the black hole shadow radius shows a positive correlation as a function of the event horizon radius. Then in the shadow context, we find that the black hole temperature and heat capacity can be presented by the shadow radius. Further analysis shows that the shadow radius can work similarly to the event horizon in revealing black hole phase transition process. In this sense, we construct the thermal profile of the charged AdS black hole with inclusion of the NLED effect. In the P < P c case, it is found that the N-type trend of the temperature given by the shadow radius is always consistent with that obtained by using the event horizon. Thus, we can conclude for the charged AdS black hole that the phase transition process can be intuitively presented as the thermal profile in the shadow context. Finally, the effects of NLED are carefully analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.