Abstract
The Cutting Stock Problem (CSP) is an integer combinatorial optimisation problem (an NP hard problem). It is an important problem in many industrial applications. In recent years, various traditional algorithms have been applied to the CSP, such as the Linear Programming (LP), the Branch and Cut (BC), the Evolutionary Algorithm (EA), etc. To continue improve performance, this paper proposes a novel Shadow Price based Genetic Algorithm (SPGA) to solve the CSP. The main contribution of this work is to combine distinct methods to generate better solutions. The experimental results have shown that the new SPGA has produced much better solutions than the classic Genetic Algorithm (GA) and other bio-inspired algorithms. This paper also demonstrates the new algorithm's capability of solving multi-objective optimisation problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Artificial Intelligence and Soft Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.