Abstract

We introduce scGAN, a novel extension of conditional Generative Adversarial Networks (GAN) tailored for the challenging problem of shadow detection in images. Previous methods for shadow detection focus on learning the local appearance of shadow regions, while using limited local context reasoning in the form of pairwise potentials in a Conditional Random Field. In contrast, the proposed adversarial approach is able to model higher level relationships and global scene characteristics. We train a shadow detector that corresponds to the generator of a conditional GAN, and augment its shadow accuracy by combining the typical GAN loss with a data loss term. Due to the unbalanced distribution of the shadow labels, we use weighted cross entropy. With the standard GAN architecture, properly setting the weight for the cross entropy would require training multiple GANs, a computationally expensive grid procedure. In scGAN, we introduce an additional sensitivity parameter w to the generator. The proposed approach effectively parameterizes the loss of the trained detector. The resulting shadow detector is a single network that can generate shadow maps corresponding to different sensitivity levels, obviating the need for multiple models and a costly training procedure. We evaluate our method on the large-scale SBU and UCF shadow datasets, and observe up to 17% error reduction with respect to the previous state-of-the-art method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.