Abstract

Shadow detection plays an important role in remote sensing applications. Shadow should be detected with damage assessment algorithms, and it should be removed from the ground surface with semantic labeling applications. The procedure of a typical shadow detection method includes defining a shadow index and thresholding it, either automatic or manually. An automatic shadow detection method is proposed to facilitate the process of automatic applications. Specifications of shadow and nonshadow areas are analyzed to construct a new spectral–spatial shadow index. Spectral elements of the index can handle the dark shadow extraction. The spatial element of the index provides a high separability between light shadow and dark nonshadow areas such as water bodies. Index definition follows a segmentation algorithm to provide a segment-based analysis. Thresholding is a nonseparable part of shadow detection methods as it divides the region into shadow and nonshadow areas. To avoid high false positive or negative results, the proposed thresholding method is dependent on the enhanced bimodality test. Bimodal distribution can easily be thresholded by typical techniques such as the Otsu thresholding, whereas a special clustering-based thresholding is proposed in the unimodal distribution. The evaluations show a great improvement in shadow detection of very high-resolution RGB images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.