Abstract

BackgroundFragrant rice, including Thai jasmine and Indian basmati varieties, is highly valued by consumers globally. 2-acetyl-1-proline (2-AP) is the major compound responsible for the aromatic character of fragrant rice. Previously, environmental factors such as water management and salinity have been proven to influence 2-AP levels in fragrant rice; assessing the effect of additional environmental factors on 2-AP concentration is therefore eminent. The level of solar radiation (solar intensity; SI) to which a crop is exposed can affect growth, yield and grain quality, and other photosynthetic and physiological characteristics. In this study the effect of shading (i.e. the reduction of SI) on yield, quality, and 2-AP concentration in two elite Chinese fragrant rice varieties, ‘Yuxiangyouzhan’ and ‘Nongxiang 18’, has been investigated. Furthermore, accumulation of the plant stress response molecules proline and gamma-aminobutyric acid, which have also been implicated in pathways leading to 2-AP production, was assessed to study shading effects on these compounds in fragrant rice, and to further possibly determine fluxes in biochemical pathways leading to 2-AP accumulation.ResultsThis study has revealed significant changes in the yield and quality characters under shading treatment. Additionally, 2-AP and GABA content in grains was significantly increased for all shading treatments in both varieties. In addition to 2-AP, ten other volatile compounds were studied; results indicated that shading treatments could have a selective effect on the metabolism of these volatile compounds.ConclusionsIn this study, we have demonstrated that shading during grain filling has significant effects on yield and quality traits in rice, and leads to the accumulation of GABA and 2-AP. We discuss the implications of these findings in terms of pathways leading to 2-AP and GABA production in fragrant rice, which have not been fully elucidated. The shading effect on ten additional volatile compounds is also discussed. Finally we discuss possible effects of variation in solar intensity resulting from anthropogenic emissions on fragrant rice production.

Highlights

  • Fragrant rice, including Thai jasmine and Indian basmati varieties, is highly valued by consumers globally. 2-acetyl-1-proline (2-AP) is the major compound responsible for the aromatic character of fragrant rice

  • Effect of shading treatment on yield, yield related traits, dry weight, and harvest index For Yuxiangyouzhan, all shading treatments resulted in a significant reduction in filled grain percentage, 1000grain weight, grain yield, total dry weight, and harvest index

  • Effect of shading treatment on grain quality Significant effects were identified for some shading treatments on most quality traits

Read more

Summary

Introduction

Fragrant rice, including Thai jasmine and Indian basmati varieties, is highly valued by consumers globally. 2-acetyl-1-proline (2-AP) is the major compound responsible for the aromatic character of fragrant rice. 2-acetyl-1-proline (2-AP) is the major compound responsible for the aromatic character of fragrant rice. Environmental factors such as water management and salinity have been proven to influence 2-AP levels in fragrant rice; assessing the effect of additional environmental factors on 2-AP concentration is eminent. In this study the effect of shading (i.e. the reduction of SI) on yield, quality, and 2-AP concentration in two elite Chinese fragrant rice varieties, ‘Yuxiangyouzhan’ and ‘Nongxiang 18’, has been investigated. Accumulation of the plant stress response molecules proline and gamma-aminobutyric acid, which have been implicated in pathways leading to 2-AP production, was assessed to study shading effects on these compounds in fragrant rice, and to further possibly determine fluxes in biochemical pathways leading to 2-AP accumulation. Buttery et al (1988) demonstrated that the probable key contributors to cooked rice aroma among the detected compounds were 2acetyl-l-pyrroline, (E,E)-2,4-decadienal, nonanal, hexanal, (E)-2-nonenal, octanal, decanal, 4-vinyl-guaiacol, and 4-vinylphenol. Jezussek et al (2002) suggested that 2-amino acetophenone and 4,5-epoxy-(E)-2-decenal were important previously unknown rice aroma compounds. Maraval et al (2008) indicated that

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call