Abstract

This paper introduces an approach to refine coarse digital elevation models (DEMs) based on the shape-from-shading (SfS) technique using a single image. Different from previous studies, this approach is designed for heterogeneous terrain and derived from a comprehensive (extended) imaging model accounting for the combined effect of atmosphere, reflectance, and shading. To solve this intrinsic ill-posed problem, the least squares method and a subsequent optimization procedure are applied in this approach to estimate the shading component, from which the terrain gradient is recovered with a modified optimization method. Integrating the resultant gradients then yields a refined DEM at the same resolution as the input image. The proposed SfS method is evaluated using 30m Landsat-8 OLI multispectral images and 30m SRTM DEMs. As demonstrated in this paper, the proposed approach is able to reproduce terrain structures with a higher fidelity; and at medium to large up-scale ratios, can achieve elevation accuracy 20–30% better than the conventional interpolation methods. Further, this property is shown to be stable and independent of topographic complexity. With the ever-increasing public availability of satellite images and DEMs, the developed technique is meaningful for global or local DEM product refinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.