Abstract
This paper introduces an approach to refine coarse digital elevation models (DEMs) based on the shape-from-shading (SfS) technique using a single image. Different from previous studies, this approach is designed for heterogeneous terrain and derived from a comprehensive (extended) imaging model accounting for the combined effect of atmosphere, reflectance, and shading. To solve this intrinsic ill-posed problem, the least squares method and a subsequent optimization procedure are applied in this approach to estimate the shading component, from which the terrain gradient is recovered with a modified optimization method. Integrating the resultant gradients then yields a refined DEM at the same resolution as the input image. The proposed SfS method is evaluated using 30m Landsat-8 OLI multispectral images and 30m SRTM DEMs. As demonstrated in this paper, the proposed approach is able to reproduce terrain structures with a higher fidelity; and at medium to large up-scale ratios, can achieve elevation accuracy 20–30% better than the conventional interpolation methods. Further, this property is shown to be stable and independent of topographic complexity. With the ever-increasing public availability of satellite images and DEMs, the developed technique is meaningful for global or local DEM product refinement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.