Abstract

Perennial, temperate, low-order streams are predicted to become intermittent as a result of irregular droughts caused by global warming and increased water demand. We hypothesize that stream metabolism changes caused by irregular droughts are linked to the shading and bed sediment structure of temperate streams. We set up 16 outdoor experimental streams with low or high shade conditions and streambeds either with alternating sorted patches of gravel and sand or homogeneous gravel-sand mix sediment structures. We assessed community respiration (CR), net ecosystem production (NEP) and periphyton biomass and structure (diatoms, green algae, cyanobacteria) in the course of 6weeks colonization, 6weeks desiccation, and 2.5weeks after rewetting. The heterotroph to autotroph (H:A) and fungi to bacteria (F:B) ratios in the microbial biofilm community were assessed at the end of the colonization and rewetting phases. Streams with different bed sediment structure were functionally similar; their metabolism under desiccation was controlled solely by light availability. During flow recession, all streams showed net heterotrophy. As desiccation progressed, NEP and CR decreased to zero. Desiccation altered the periphyton composition from predominantly diatoms to green algae and cyanobacteria, particularly in streams with low shade and mixed sediments. Rapid post-drought resilience of NEP was accompanied by high cyanobacteria and green algae growth in low shade, but poor total periphyton growth in high shade streams. Variable periphyton recovery was followed by increased H:A in relation to shading, and decreased F:B in relation to sediments structure. These shifts resulted in poor CR recovery compared to the colonization phase, suggesting a link between CR resilience and microbial composition changes. The links between drought effects, post-drought recovery, shading level, and streambed structure reveal the importance of low-order stream management under a changing climate and land use to mitigate the future impact of unpredictable infrequent droughts on stream metabolism in temperate ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call