Abstract

There is mounting evidence that tire wear particles can harm natural systems, but worldwide trends in car weight and car usage, mean emissions are set to increase. To control tire wear emissions and help understand fate and transport, detailed characterisation of the particles, and the relationship between road surface properties and emission profiles is needed. This study deployed a suite of experiments utilising the advanced road simulator of the Swedish National Road and Transport Research Institute to compare seasonal tire types from three brands. An extraction method was developed for a coarse (>30 µm) fraction of tire and road wear particles (TRWP), and a comprehensive physicochemical characterisation scheme applied to both TRWP and tire-tread, including microscopy, energy-dispersive X-ray spectroscopy and pyrolysis-GC/MS. Road simulator dusts and hand-picked TRWP showed differences in shape, numbers, and mass between tire types and brands, and between asphalt and cement concrete road surfaces. Contrary to accepted perceptions, tactile analyses revealed that firm-elastic TRWP comprised only a minor proportion of TRWP. Fragile and chemically distinct tire-road-derived particles, termed here sub-elastic TRWP, comprised 39–100% of TRWP. This finding raises urgent questions about overall TRWP classification and identification features, resistance to weathering, and environmental fate. At the same time, differences in TRWP generation between tire formulations, and road surfaces, show potential for controlling emissions to reduce global impacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.