Abstract

BackgroundHost-associated microbiota are integral to the ecology of their host and may help wildlife species cope with rapid environmental change. Urbanization is a globally replicated form of severe environmental change which we can leverage to better understand wildlife microbiomes. Does the colonization of separate cities result in parallel changes in the intestinal microbiome of wildlife, and if so, does within-city habitat heterogeneity matter? Using 16S rRNA gene amplicon sequencing, we quantified the effect of urbanization (across three cities) on the microbiome of eastern grey squirrels (Sciurus carolinensis). Grey squirrels are ubiquitous in rural and urban environments throughout their native range, across which they display an apparent coat colour polymorphism (agouti, black, intermediate).ResultsGrey squirrel microbiomes differed between rural and city environments; however, comparable variation was explained by habitat heterogeneity within cities. Our analyses suggest that operational taxonomic unit (OTU) community structure was more strongly influenced by local environmental conditions (rural and city forests versus human built habitats) than urbanization of the broader landscape (city versus rural). The bacterial genera characterizing the microbiomes of built-environment squirrels are thought to specialize on host-derived products and have been linked in previous research to low fibre diets. However, despite an effect of urbanization at fine spatial scales, phylogenetic patterns in the microbiome were coat colour phenotype dependent. City and built-environment agouti squirrels displayed greater phylogenetic beta-dispersion than those in rural or forest environments, and null modelling results indicated that the phylogenetic structure of urban agouti squirrels did not differ greatly from stochastic expectations.ConclusionsSquirrel microbiomes differed between city and rural environments, but differences of comparable magnitude were observed between land classes at a within-city scale. We did not observe strong evidence that inter-environmental differences were the result of disparate selective pressures. Rather, our results suggest that microbiota dispersal and ecological drift are integral to shaping the inter-environmental differences we observed. However, these processes were partly mediated by squirrel coat colour phenotype. Given a well-known urban cline in squirrel coat colour melanism, grey squirrels provide a useful free-living system with which to study how host genetics mediate environment x microbiome interactions.

Highlights

  • Host-associated microbiota are integral to the ecology of their host and may help wildlife species cope with rapid environmental change

  • It is hypothesized that the microbiome may help to buffer the adverse effects of novel environmental change by extending a host’s phenotypic range

  • Many free-living study systems are intractable for empirically testing these predictions, partly because it is difficult to define what constitutes a truly ‘novel’ environmental change

Read more

Summary

Introduction

Host-associated microbiota are integral to the ecology of their host and may help wildlife species cope with rapid environmental change. Urbanization is a globally replicated form of severe environmental change which we can leverage to better understand wildlife microbiomes. It is hypothesized that the microbiome may help to buffer the adverse effects of novel environmental change by extending a host’s phenotypic range. The microbiome might facilitate adaptive stop-gap solutions during host colonization to a new ecological niche. The gut microbiome is commonly invoked in such theorization, since the semi-permeable intestinal epithelium provides an intimate host-microbe interface through which microbiota can shape host behaviour [13], immunity [14], homeostasis [15], digestion [16], and dietary detoxification [17]—traits which define a species fundamental niche. Many free-living study systems are intractable for empirically testing these predictions, partly because it is difficult to define what constitutes a truly ‘novel’ environmental change

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call